From: Coltrain, Katrina **Sent:** Friday, July 29, 2016 2:59 PM **To:** Perez, Myra; Warren, Christy; Flores, Raymond **Cc:** Luis Vega (lvega@eaest.com); Patrick Appel (pappel@eaest.com) **Subject:** Wilcox Oil Company - Lab Request Forms Updated Attachments: Lab sample tables 7-29-16.pdf; Primary COPCs for Wilcox 7-27-16.xlsx; WILCOX RI Sept 12-2016 Sample Request Form 7-29-16.doc; WILCOX RI Sept 19-2016 Sample Request Form 7-29-16.doc All, please find attached the Lab Request Forms for Wilcox Oil. As discussed, we will be in the field the weeks of September 12 and September 19. In addition, we have confirmed that additional funding for the project will not be forthcoming in time for us to complete all actions we planned; therefore, the number of samples being requested for soil has been significantly reduced. Also, you will notice that the plan is to use the pre-weighted vials/stir bar for sampling the VOCs in soil (rather than the core samplers as mention on the conference call). Because of the nature of the sampling, some of them may be medium soil but we are not certain that is the case. Can we indicate on the Chain-of-custody the samples we think will be medium and if the lab finds that the samples may be low, rerun the sample without dilution as a low concentration sample? Thank you for your time and patience as we worked through these issues. I hope that these forms provide you with a better understanding of what we need for the RI. Please call with any questions. #### thanks Katrina Higgins-Coltrain Remedial Project Manager US EPA Region 6 LA/OK/NM Section (6SF-RL) 1445 Ross Avenue Dallas, Texas 75202 214-665-8143 ### TABLE 6. PROPOSED FIELD PROGRAM FOR SOIL INVESTIGATION | | | | | | | | | | | | | Analysis | | | | | |---------------------------------|------------------------|---|----------------------------------|--|---------------------------------------|-------------------------------|---------------------------|---------------------------|---------------|-------|-------------------------------------|----------|---|------------|------|--------------------| | Sample Location | Sample Medium | Rationale | Nunber of
Sample
Locations | Sample Identification | Sampling Tool | Sampling
Depth
(ft bgs) | Field Screening
by PID | VOCs
(includes
EDB) | PAHs
(SIM) | SVOCs | TAL Metals
(includes
Mercury) | Cyanide | Hexavalent
Chromium | Pesticides | PCBs | Dioxins/
Furans | | Lorraine Process Area | | | 26 | LPA-SB-01-0.5 through LPA-SB-26-0.5 | T | 0.0 - 0.5 | Vac | 26 | 26 | 26 | 26 | 26 | 0 | 0 | 0 | 1 0 | | | Surface soil | To assess potential | 26
26 | LPA-SB-01-0.5 through LPA-SB-26-0.5
LPA-SB-01-2.0 through LPA-SB-26-2.0 | | 0.0 - 0.5 | Yes
Yes | 26 | 26 | 26 | 26 | 26 | 0 | 0 | 0 | 0 | | , | | source areas and | 26 | LPA-SB-01-6.0 through WPA-SB-26-6.0 | Split spoon | 2.0 -6.0 | Yes | 26 | 26 | 26 | 26 | 26 | 0 | 0 | 0 | 0 | | Lorraine Process Area (LPA) | Subsurface soil | delineate nature and | 26 | LPA-SB-01-10.0 through LPA-SB-26-10.0 | Continuous sampler PVC/acetate sleeve | 6.0 - 10.0 | Yes | 26 | 26 | 26 | 26 | 26 | 0 | 0 | 0 | 0 | | | Subsurface soft | extent | 26 | LPA-SB-01-?? through LPA-SB-26-?? | | 2 ft interval above refusal | Yes | 26 | 26 | 26 | 26 | 26 | 0 | 0 | 0 | 0 | | | Surface soil | | 4 | LPA-SB-27-0.5 through LPA-SB-30-0.5 | | 0.0 - 0.5 | Yes | 4 | 4 | 4 | 4 | 4 | 4 | 0 | 0 | 0 | | | Surface son | To determine if | 4 | LPA-SB-27-2.0 through LPA-SB-30-2.0 | Split spoon | 0.5 - 2.0 | Yes | 4 | 4 | 4 | 4 | 4 | 0 | 0 | 0 | 0 | | Lorraine Process Area (LPA) | | cooling pond is a | 4 | LPA-SB-27-6.0 through WPA-SB-30-6.0 | Continuous sampler | 2.0 -6.0 | Yes | 4 | 4 | 4 | 4 | 4 | 0 | 0 | 0 | 0 | | Cooling Pond | Subsurface soil | source area | 4 | LPA-SB-27-10.0 through LPA-SB-30-10.0 | PVC/acetate sleeve | 6.0 - 10.0 | Yes | 4 | 4 | 4 | 4 | 4 | 0 | 0 | 0 | 0 | | | | | 4 | LPA-SB-27-?? through LPA-SB-30-?? | | 2 ft interval above refusal | Yes | 4 | 4 | 4 | 4 | 4 | 0 | 0 | 0 | 0 | | Wilcox Process Area | | | | | T | | I I | | | I | 1 | I | T 110 1 | | | | | Wilcox Process Area (WPA) | Surface soil | To assess potential source areas and delineate nature and | 65 | WPA-SB-01-0.5 through WPA-SB-65-0.5 | Split spoon
Continuous sampler | 0.0 - 0.5 | Yes | 65 | 65 | 65 | 65 | 65 | Total 10 samples:
7 Randomly Selected
Borings +
WPA-SB-01-0.5 WPA-
SB-01-0.5
WPA-SB-19-0.5 | 10 | 10 | 10 | | | | extent | 65 | WPA-SB-01-2.0 through WPA-SB-65-2.0 | PVC/acetate sleeve | 0.5 - 2.0 | Yes | 65 | 65 | 65 | 65 | 65 | 0 | 0 | 0 | 0 | | | | | 65 | WPA-SB-01 -6.0 through WPA-SB-65-6.0 | | 2.0 -6.0 | Yes | 65 | 65 | 65 | 65 | 65 | 0 | 0 | 0 | 0 | | | Subsurface soil | | 65 | WPA-SB-01 -10.0 through WPA-SB-65-10.0 | | 6.0 - 10.0 | Yes | 65 | 65 | 65 | 65 | 65 | 0 | 0 | 0 | 0 | | | | | 65 | WPA-SB-01-?? through WPA-SB-65-?? | | 2 ft interval above refusal | Yes | 65 | 65 | 65 | 65 | 65 | 0 | 0 | 0 | 0 | | East Tank Farm Area | | | | | <u> </u> | | | | | 1 | 1 | ı | 1 | | | | | | Surface soil | | 11 | ETF-SB-01-0.5 through ETF-SB-11-0.5 | | 0.0 - 0.5 | Yes | 11 | 11 | 11 | 11 | 11 | 0 | 0 | 0 | 0 | | | | To assess potential source areas and | 11 | ETF-SB-01-2.0 through ETF-SB-11-2.0 | Split spoon | 0.5 - 2.0 | Yes | 11 | 11 | 11 | 11 | 11 | 0 | 0 | 0 | 0 | | East Tank Farm (ETF) | | delineate nature and | 11 | ETF-SB-01-6.0 through ETF-SB-11-6.0
ETF-SB-01-10.0 through ETF-SB-11-10.0 | Continuous sampler | 2.0 -6.0
6.0 - 10.0 | Yes
Yes | 11 | 11
11 | 11 | 11
11 | 11
11 | 0 | 0 | 0 | 0 | | | Subsurface soil | extent | 11 | ETF-SB-01-?? through ETF-SB-11-?? | PVC/acetate sleeve | 2 ft interval above refusal | Yes | 11 | 11 | 11 | 11 | 11 | 0 | 0 | 0 | 0 | | East Tank Farm (ETF) | Surface soil | To determine if this is | 10 | ETF-SB-12-0.5 through ETF-SB-21-0.5 | Split spoon Continuous sampler | 0.0 - 0.5 | Yes | 10 | 10 | 10 | 10 | 10 | 0 | 0 | 0 | 0 | | Tanks 1 and 4 | Surface soil | a source area | 10 | ETF-SB-12-2.0 through ETF-SB-21-2.0 | PVC/acetate sleeve | 0.5 - 2.0 | Yes | 10 | 10 | 10 | 10 | 10 | 0 | 0 | 0 | 0 | | Total Soil Samples | | | | | | | | 550 | 550 | 550 | 550 | 550 | 14 | 10 | 10 | 10 | | Soil Investigation QC | | | | | | | | | | | | | | | | | | Field Duplicates | Soil | | | 1 per 10 samples | | | | 55 | 55 | 55 | 55 | 55 | 2 | 1 | 1 | 1 | | MS/MSDs | Soil | | | 1 per 20 samples (extra volume only; not include | led in total sample count) | | | 28 | 28 | 28 | 28 | 28 | 1 | 1 | 1 | 1 | | Total Soil Samples Associated w | ith Soil Investigation | on | | | | | | 633 | 633 | 633 | 633 | 633 | 17 | 12 | 12 | 12 | | Water QC Samples | | | | | | | | | | | | | | | | | | Trip blanks | Water | | | 1 per cooler containing equipment rinsate for equipment | ment used in soil investigation | | | 15 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | Equipment blanks | Water | | | 1 per day per set of for nondedicated equipment per team | | | | | 30 | 30 | 30 | 30 | 1 | 1 | 1 | 1 | | Total Water QC Samples Associ | ated with Soil Inve | stigation | | | | | | 45 | 30 | 30 | 30 | 30 | 1 | 1 | 1 | 1 | EA Engineering, Science, and Technology, Inc., PBC #### TABLE 6. PROPOSED FIELD PROGRAM FOR SOIL INVESTIGATION | | | | | | | | | | | | | Analysis | | | | | |---------------------------------|--------------------|------------|-----------|--|---------------------------|-----------|-----------------|-----------|-------|-------|------------|----------|------------|------------|------|----------| | | | | Nunber of | | | Sampling | | VOCs | | | TAL Metals | | | | | | | | | | Sample | | | Depth | Field Screening | (includes | PAHs | GMOG | (includes | G 11 | Hexavalent | D (1.1) | DCD | Dioxins/ | | | Sample Medium | Rationale | Locations | Sample Identification | Sampling Tool | (ft bgs) | by PID | EDB) | (SIM) | SVOCs | Mercury) | Cyanide | Chromium | Pesticides | PCBs | Furans | | Background | ICS Methodology | | | | | | | | | | | | | Background grid | Surface soil | Background | 1 | BKG-0.5 | Hand auger | 0.0 - 0.5 | Yes | 0 | 1 | 0 | 1 | 0 | 0 | 0 | 0 | 1 | | Buenground gird | Surrace son | Duenground | - | 2110 010 | Slide hammer | 0.0 0.5 | 105 | Ü | • | | • | | v | Ů | Ü | | | | ļ | | | | Scoop | | | | | | | | | | | 1 | | Total Background Soil Samples | | | | | | | | 0 | 1 | 0 | 1 | 0 | 0 | 0 | 0 | 1 | | Background Soil QC | | | | | | | | | | | | | | | | | | Field Replicates | Soil | | | 1 Duplicate (BKG-0.5-D) and 1 Triplication | ate (BKG-0.5-T) | | | 0 | 2 | 0 | 2 | 0 | 0 | 0 | 0 | 2 | | MS/MSDs | Soil | | | 1 per 20 samples (extra volume only; not include | ed in total sample count) | | | 0 | 1 | 0 | 1 | 0 | 0 | 0 | 0 | 1 | | Total Soil Samples Associated w | ith Background | | | | | | | 0 | 3 | 0 | 3 | 0 | 0 | 0 | 0 | 3 | | Water QC Samples | | | | | | | | | | | | | | | | | | Trip blanks | Water | | | 1 per cooler containing equipment rinsate for equipment used in soil investigation | | | | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | Equipment blanks | Water | | | 1 per day per set of for nondedicated equipment per team | | | | 0 | 1 | 0 | 1 | 0 | 0 | 0 | 0 | 1 | | Total Water QC Samples Associ | ated with Backgrou | nd Soil | | | | | | 0 | 1 | 0 | 1 | 0 | 0 | 0 | 0 | 1 | #### NOTES: Sample depth will vary depending upon location of sample and depth of refusal; as a result, the number of samples collected may be less than shown. bgs = Below ground surface NORM = Naturally-occurring radioactive materials SIM = Selective ion monitoring EDB = Ethylene dibromide PAH = Polycyclic aromatic hydrocarbon SVOC = Semivolatile organic compound ft = foot (feet) PCB = Polychlorinated biphenyl TCS = Incremental Composite Sampling PID = Photoionization detector TPH = Total petroleum hydrocarbons PVC = polyvinyl chloride VOC = Volatile organic compound MSD = Matrix spike duplicate QC = Quality control TABLE 8. PROPOSED FIELD PROGRAM FOR PRIVATE SUPPLY WELL AND PIEZOMETER SAMPLING | | | | Analyses | | | | | | | | | | | |--|--|---|---------------------|---------------------------|---|---------------|-------|-------------------------------|---------|------------------------|------------|------|--------------------| | Sample Location | Sample Identification | Sampling Method | Field
Parameters | LNAPL
Characterization | VOCs
(includes
EDB) | PAHs
(SIM) | SVOCs | TAL Metals (includes Mercury) | Cyanide | Hexavalent
Chromium | Pesticides | PCBs | Dioxins/
Furans | | Sample Location | GW-01 | Tap or Grab | 1 | 0 | 1 | 1 | 1 | 1 | 1 | 1 | 0 | 0 | 0 | | | GW-02 | Tap or Grab | 1 | 0 | 1 | 1 | 1 | 1 | 1 | 1 | 0 | 0 | 0 | | East Tank Farm Residential Wells | GW-03 | Tap or Grab | 1 | 0 | 1 | 1 | 1 | 1 | 1 | 1 | 0 | 0 | 0 | | | GW-04 | Tap or Grab | 1 | 0 | 1 | 1 | 1 | 1 | 1 | 1 | 0 | 0 | 0 | | | GW-05 | Tap or Grab | 1 | 0 | 1 | 1 | 1 | 1 | 1 | 1 | 0 | 0 | 0 | | North of East Tank Farm Residential | GW-06 | * | 1 | 0 | 1 | 1 | 1 | 1 | 1 | 1 | 0 | 0 | 0 | | Wells | | Tap or Grab | - | 0 | 1 | 1 | - | 1 | 1 | 1 | 0 | | 0 | | | GW-07 | Tap or Grab | 1 | - | 1 | 1 | 1 | 1 | 1 | 1 | , | 0 | | | South of East Tank Farm Residential Wells | GW-08 | Tap or Grab | 1 | 0 | 1 | 1 | 1 | 1 | 1 | 1 | 0 | 0 | 0 | | | GW-09 | Tap or Grab | 1 | 0 | 1 | 1 | 1 | 1 | 1 | 1 | 0 | 0 | 0 | | Lorraine Process Area Church Well North Tank Farm | GW-10 | Tap or Grab | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 0 | 0 | 0 | | Residential Well | GW-11 | Tap or Grab | 1 | 0 | 1 | 1 | 1 | 1 | 1 | 1 | 0 | 0 | 0 | | North of North Tank Farm
Residential Well | GW-12 | Tap or Grab | 1 | 0 | 1 | 1 | 1 | 1 | 1 | 1 | 0 | 0 | 0 | | Wilcox Residential Well | GW-13 | Tap or Grab | 1 | 0 | 1 | 1 | 1 | 1 | 1 | 1 | 0 | 0 | 0 | | East Tank Farm | GW-14 | Tap or Grab | 1 | 0 | 1 | 1 | 1 | 1 | 1 | 1 | 0 | 0 | 0 | | Private Wells Not In Use | GW-15 | Tap or Grab | 1 | 0 | 1 | 1 | 1 | 1 | 1 | 1 | 0 | 0 | 0 | | Total Investigation Tap Samples | | | 15 | 1 | 15 | 15 | 15 | 15 | 15 | 15 | 0 | 0 | 0 | | Field duplicate | 1 per 10 |) samples | 0 | 0 | 2 | 2 | 2 | 2 | 2 | 2 | 0 | 0 | 0 | | MS/MSDs | 1 per 20 samples (extra volume only; not included in total sample count) | | 0 | 0 | 1 | 1 | 1 | 1 | 1 | 1 | 0 | 0 | 0 | | Total Private Supply Well Samples | | | 15 | 1 | 17 | 17 | 17 | 17 | 17 | 17 | 0 | 0 | 0 | | Water QC Samples | | | | | | | | | | | | | | | Trip blanks | 1 per cooler containing aque | ous samples for VOC analysis | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | Equipment blanks | 1 per day per set of for none | ledicated equipment per team | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | Total Water QC Samples Associated | with Private Supply Well Sample | ing | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | Piezometers | | | | | | | • | | | | | | <u> </u> | | Piezometers | PW-01 through PW-10 | Low Flow | 10 | 0 | 10 | 10 | 10 | 10 | 10 | 1 | 0 | 0 | 0 | | Total Investigation Tap Samples | | | 10 | 0 | 10 | 10 | 10 | 10 | 10 | 1 | 0 | 0 | 0 | | Field duplicate | 1 per 10 |) samples | 0 | 0 | 1 | 1 | 1 | 1 | 1 | 1 | 0 | 0 | 0 | | MS/MSDs | |) samples
cluded in total sample count) | 0 | 0 | 1 | 1 | 1 | 1 | 1 | 1 | 0 | 0 | 0 | | Total Piezometer Samples | | | 10 | 0 | 11 | 11 | 11 | 11 | 11 | 2 | 0 | 0 | 0 | | Water QC Samples | | | | | • | | | | | | | • | | | Trip blanks | 1 per cooler containing aque | ous samples for VOC analysis | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | Equipment blanks | 1 per day per set of nonde | dicated equipment per team | 0 | 0 | 1 | 1 | 1 | 1 | 1 | 1 | 0 | 0 | 0 | | Total Water QC Samples Associated | | | 0 | 0 | 2 | 1 | 1 | 1 | 1 | 1 | 0 | 0 | 0 | | NOTES: Field parameters: pH, temperature, cond bgs = Below ground surface EDB = Ethylene dibromide MS = Matrix spike | ductivity, dissolved oxygen, oxidat | ion-reduction potential, and turbidit
MSD = Matrix spike duplicate
PAH = Polycyclic aromatic hydroc
PCB = Polychlorinated biphenyl | | | QC = Quali
SIM = Selec
VOC = Vol: | tive ion mor | | | | | | | | EA Engineering, Science, and Technology, Inc., PBC # TABLE 9. PROPOSED FIELD PROGRAM FOR VAPOR INTRUSION INVESTIGATION | Sample Type Vapor Instrusio | Proposed Sample Area | Matrix | Sample Method | Sample Frequency | Sample Interval | Sample Identification | No. of Sample
Locations | TO-15 SIM
/TO-15 | |--|---|--------------|--|--|--|--|----------------------------|---------------------| | vapor mstrusic | Lorraine Process Area (LPA) Church | | TO-15: 6-Liter
Summa canister with
24-hour regulator | once in summer) | Sub-slab taken below slab | For sub-slab or crawl space air sample: LPA-SS-01 or LPA-CS-01 For indoor air sample: LPA-IA-01 | 2 | 2 | | Indoor Air/
Sub-Slab or
Crawlspace | Lorraine Process Area Residence | | | | Crawlspace taken in crawlspace Indoor air sample collected from | For sub-slab or crawl space air sample: LPA-SS-02 or LPA-CS-02
For indoor air sample: LPA-IA-02 | 2 | 2 | | | Wilcox Process Area (WPA) Residence | Air/Soil Gas | | | within breathing zone (3 to 4 feet above ground surface) of the home | For sub-slab or crawl space air sample: WPA-SS-03 or WPA-CS-03
For indoor air sample: WPA-IA-03 | 2 | 2 | | Background | Upwind of sample locations in open area | | | Locations around perimeter of sampling area | 5 to 8 feet off the ground | LPA-VIBG-01, LPA-VIBG-02, WPA-VIBG-03 | 4 | 4 | | Field duplicate | As close as possible, in space and time, to the original sample | | | 1 outdoor location
1 sub-slab
1 indoor | Same as original sample | Same as original with "D" added to the ID,
for example LPA or WPA-SS-01D | 3 | 3 | | Total Vapor In | trusion Samples | | | | | | 13 | 13 | SIM = Selective ion monitoring TABLE 4. QUALITY ASSURANCE INDICATOR CRITERIA | Indicator Parameter | Analytical Parameter | QC Sample ^a | Acceptance Criteria for
Laboratory Analysis | | | | | | | |-----------------------------------|--|---|--|--|--|--|--|--|--| | Accuracy | VOCs, EDB, SVOCs, PAHs,
TPH, PCBs (Aroclors),
Pesticides, Dioxins/Furans | MS
MSD
Blanks ^b | 50 to 150 percent recovery (MS/MSD) Less than CRQL (blanks) | | | | | | | | (percent recovery) | TAL Metals, Mercury,
Hexavalent Chromium,
Cyanide, AVS-SEM | MS
LCS
Reference samples
Blanks ^a | 75 to 125 percent recovery (MS) 80 to 120 percent recovery (LCS) Limits per supplier (reference sample) Less than CRDL (blanks) | | | | | | | | | VOCs, EDB, SVOCs, PAHs,
TPH, PCBs (Aroclors),
Pesticides, Dioxins/Furans | MS
MSD
Field duplicates | 30 percent RPD (MS/MSD)
50 percent RPD (field duplicates) | | | | | | | | | Background PAHs and
Dioxins/Furans via ICS | Field replicates | 30 percent RPD (field replicates) | | | | | | | | Precision (RPD) | TAL Metals, Mercury, Hexavalent Chromium, Cyanide, AVS-SEM, Asbestos, General Chemistry Parameters | MS MSD or MD Field duplicates Laboratory duplicates | 20 percent RPD (MS, MSD, MD aqueous) 35 percent RPD (MS, MSD, MD solid) 50 percent RPD (field duplicates) 25 percent (laboratory duplicates) | | | | | | | | | Background TAL Metals via ICS | Field replicates | 30 percent RPD (field replicates) | | | | | | | | Sensitivity (quantitation limits) | Analytical tests | MS MD or MSD Field duplicates Laboratory duplicates | Not applicable | | | | | | | | Completeness | The objective for data complete | eness is 90 percent. | | | | | | | | | Representativeness | The sampling network and analytical methods for this site are designed to provide data that are | | | | | | | | | | Comparability | The use of standard published s
data of known quality. These d | | hods, and the use of QC samples, will ensure er data of known quality. | | | | | | | #### NOTES: AVS = Acid-volatile sulfide PAH = Polycyclic aromatic hydrocarbon $\label{eq:cross_contract} CRDL = Contract\text{-required Detection Limit} \qquad \qquad PCB = Polychlorinated \ biphenyl$ $CRQL = Contract\text{-required Quantitation Limit} \qquad \qquad QC = Quality \ control$ EDB = Ethylene bromide RPD = Relative percent difference ICS = Incremental Composite Sampling SVOC = Semivolatile organic compound LCS = Laboratory control sample SEM = Simultaneously-extracted metal MD = Matrix duplicate TAL = Target Analyte List MS = Matrix spike TPH = Total petroleum hydrocarbons MSD = Matrix spike duplicate VOC = Volatile organic compound ^a Not all listed QC samples apply to all analytical parameters. QC samples are analytical method specific. ^b May include method blanks, reagent blanks, instrument blanks, calibration blanks, trip blanks and field blanks. TABLE 12. PARAMETERS, METHODS, REQUIRED VOLUME, CONTAINERS, PRESERVATIVES, AND HOLDING TIMES | Parameter | Method | Volume and Container ¹ | Preservatives | Holding Time ² | |---|--|--|--|------------------------------| | Air Samples | | | | | | VOCs | EPA TO-15 SIM | One 6-liter evacuated summa canister | None | 30 days | | Aqueous Samples Alkalinity | Standard Method 2320 B | One 250-milliliter HDPE bottle | Store at <6°C (4+2°C) | 7 days | | - | | | NaOH to pH >12; | | | Cyanide | CLP ISM02.3 | One 1-liter HDPE bottle | Store at $<6^{\circ}\text{C} (4+2^{\circ}\text{C})$ | 14 days | | Dioxins and Furans | CLP HRSM01.2 | Two 1-liter amber glass bottles | Store at <6°C (4+2°C) | 360 days | | Hardness | EPA Method 130.2 | One 100-milliliter HDPE bottle | HNO ₃ to pH \leq 2;
Store at $<$ 6°C (4+2°C) | 6 months | | Hexavalent Chromium | SW-846 Method 7199 or
Standard Method 218.6 | One 125-milliliter HDPE bottle | Store at <6°C (4+2°C) | 24 hours | | Metals (including Hg) | CLP ISM02.3 (ICS/AES and ICS/MS) | One to two 1-liter HDPE bottles | HNO ₃ to pH \leq 2;
Store at $<$ 6°C (4+2°C) | 180 days
(28 days for Hg) | | PCBs (Aroclors) | CLP SOM02.3 | Two 1-liter amber glass bottles | Store at $<6^{\circ}\text{C} (4+2^{\circ}\text{C})$ | 7 days | | Pesticides | CLP SOM02.3 | Two 1-liter amber glass bottles | Store at $<6^{\circ}\text{C} (4+2^{\circ}\text{C})$ | 7 days | | SVOC SIM (PAHs) | CLP SOM02.3 | Four 1-liter amber glass bottles | Store at $<6^{\circ}\text{C} (4+2^{\circ}\text{C})$ | 7 days | | SVOCs | CLP SOM02.3 | Two 1-liter amber glass bottles | Store at $<6^{\circ}\text{C} (4+2^{\circ}\text{C})$ | 7 days | | Total Dissolved Solids | EPA Method 160.1 | One 1-liter HDPE bottle | Store at $<6^{\circ}\text{C} (4+2^{\circ}\text{C})$ | 7 days | | Total Organic Carbon | Standard Method 5310 | One 250-milliliter glass bottle | H_2SO_4 to pH <2;
Store at <6°C (4+2°C) | 28 days | | Total Suspended Sediment | ASTM Method D 3977-97 | One 200-milliliter HDPE bottle | Store at <6°C (4+2°C) | 7 days | | VOCs | CLP SOM02.3 | Three 40-milliliter amber glass VOA vials (filled to capacity with no headspace) | HCL to pH <2;
Store at <6°C (4+2°C) | 14 days | | Soil and Sediment Samples | | (mod to supure) will no newapase) | <i>Store at</i> 0 0 (1/2 0) | | | Asbestos | CARB Method 435 | One 16-ounce glass jar | None | Unspecified | | AVS/SEM | EPA 821/R-91-100
SW-846 Method 6010C/9034 | One 8-ounce amber glass jar
(filled to capacity) | Store at <6°C (4+2°C) | 14 days | | Cyanide | CLP ISM02.3 | One 8-ounce glass jar with Teflon TM -lined cap | Store at <6°C (4+2°C) | 14 days | | Dioxins and Furans | CLP HRSM01.2 | One 8-ounce amber glass jar with Teflon TM -lined cap | Store at $<6^{\circ}\text{C} (4+2^{\circ}\text{C})$ | 360 days | | Grain Size | ASTM Method D422 | 1-gallon plastic bag | None | Unspecified | | Hexavalent Chromium | SW-846 Methods 3060 and 7199 | One 8-ounce glass jar with Teflon TM -lined cap | Store at <6°C (4+2°C) | 30 days | | Metals (including Hg) | CLP ISM02.3 (ICP/AES and ICP/MS) | One to two 8-ounce glass jars with TeflonTM-lined caps | Store at <6°C (4+2°C) | 180 days
(28 days for Hg) | | PCBs (Aroclors) | CLP SOM02.3 | One 8-ounce amber glass jar with Teflon TM -lined cap | Store at $<6^{\circ}\text{C} (4+2^{\circ}\text{C})$ | 14 days | | Pesticides | CLP SOM02.3 | One 8-ounce amber glass jar with Teflon TM -lined cap | Store at $<6^{\circ}\text{C} (4+2^{\circ}\text{C})$ | 14 days | | pH | SW9045D | One 8-ounce glass jar with Teflon TM -lined cap | Store at <6°C | Analyze immediately | | SVOC SIM (PAHs) | CLP SOM02.3 | One 8-ounce amber glass jar with Teflon TM -lined cap | Store at <6°C (4+2°C) | 14 days | | SVOCs | CLP SOM02.3 | One 8-ounce amber glass jar with Teflon TM -lined cap | Store at <6°C (4+2°C) | 14 days | | Total Organic Carbon | Walkley- Black | One 8-ounce amber glass jar with Teflon TM -lined cap | Store at <6°C (4+2°C) | 28 days | | VOCs | CLP SOM02.3
SW-846 Method 5035 or 5035A
(VOC sample preparation) | Three 5-gram coring tool devices (e.g., EnCore) samplers and one 4-ounce glass jar Three closed-system pre-weighed 40-milliliter amber glass vials with magnetic stir bar and one 4-ounce glass jar | Store at <6°C (4+2°C) | 48 hours | | LNAPL Sample | | | | | | C3-C44 Whole Oil or
C8-C40 Full Scan | ASTM Method D3328 or ASTM
Method 5739 | Two 40-milliliter VOA vials | Unpreserved | Unlimited | | Alkyl Leads, EDB, MMT | EPA 8080 Modified (GC/ECD) | Two 40-milliliter VOA vials | Unpreserved | Unlimited | | Investigation-derived Waste | е | | | | | Reactivity | SW-846 Chapter 7 | One 4-ounce glass jar with Teflon TM -lined cap | Store at $<6^{\circ}\text{C} (4+2^{\circ}\text{C})$ | 72 hours | | Corrosivity (pH soil) | SW-846 Method 9045 | One 4-ounce glass jar with Teflon TM -lined cap | Store at $<6^{\circ}\text{C} (4+2^{\circ}\text{C})$ | 72 hours | | Corrosivity (pH liquid) | SW-846 Method 9040 | One 500-milliliter glass bottle | Store at $<6^{\circ}\text{C} (4+2^{\circ}\text{C})$ | 72 hours | | Corrosivity (steel) | SW-846 Method 1110 | One 4-ounce glass jar
One 250-milliliter HDPE bottle | Store at <6°C (4+2°C)
Store at <6°C (4+2°C) | 7 days | | Ignitability (solids) | SW-846 Method 1030 | One 4-ounce glass jar | Store at $<6^{\circ}\text{C} (4+2^{\circ}\text{C})$ | 14 days | | Ignitability (liquid) | SW-846 Method 1010 or 1020 | One 250-milliliter HDPE bottle | Store at $<6^{\circ}\text{C} (4+2^{\circ}\text{C})$ | 14 days | | TPH GRO | TX Method 1005 | One 4-ounce amber glass jar | Store at <6°C (4+2°C) | 14 days | | TPH DRO and ORO | | (filled to capacity) | Store at $<6^{\circ}\text{C} (4+2^{\circ}\text{C})$ | - | | TCLP Metals ³ | SW-846 Methods 1311, 3010, 6010, and 7470 | 100 grams minimum (solid) or 1 liter minimum (liquid)
Plastic or glass container | Store at <6°C (4+2°C) | 180 days
(28 days for Hg) | | TCLP SVOCs | SW-846 Methods 1311,
3510, and 8270C | 100 grams minimum (solid) or 2 liters minimum (liquid)
Glass containers | Store at <6°C (4+2°C) | 14 days | | TCLP VOCs | SW-846 Methods 1311 and 8260B | 50 grams minimum (solid) or 120 milliliters minimum (liquid)
Glass containers | Store at <6°C (4+2°C) | 14 days | | | | | | | ### NOTES: AES = Atomic emission spectroscopy $HNO_3 = Nitric acid$ ASTM = American Society for Testing and Materials ICP = Inductively-coupled plasma AVS = Acid volatile sulfide MMT = Methylcyclopentadienyl manganese tricarbonyl CARB = California Air Resource Board MS = Mass spectrometry $\begin{array}{lll} \text{CLP} = \text{Contract Laboratory Program} & \text{NaOH} = \text{Sodium hydroxide} \\ \text{DRO} = \text{Diesel range organics } C_{10} - C_{28} & \text{ORO} = \text{Oil range organics} > C_{28} \\ \text{ECD} = \text{Electron capture detector} & \text{PAH} = \text{Polycyclic aromatic hydrocarbon} \\ \text{EDB} = \text{Ethylene dibromide} & \text{PCB} = \text{Polychlorinated biphenyl} \\ \text{GC} = \text{Gas chromatography} & \text{SEM} = \text{Simultaneously extracted metals} \\ \text{GRO} = \text{Gasoline range organics } C_6 - C_{10} & \text{SIM} = \text{Selective ion monitoring} \\ \text{H}_2\text{SO}_4 = \text{Sulfuric acid} & \text{SVOC} = \text{Semivolatile organic compound} \\ \end{array}$ HCL = Hydrochloric acid TCLP = Toxicity Characteristic Leaching Procedure HDPE = High-density polyethylene TPH = Total petroleum hydrocarbons Hg = Mercury VOC = Volatile organic compound ¹ It will be necessary to verify container requirements with the laboratory at the time of scheduling. $^{^{2}}$ Holding time is measured from the time of sample collection to the time of sample extraction and/or analysis. ³ Arsenic, barium, cadmium, chromium, lead, mercury, silver, and selenium SCREENING CRITERIA FOR AIR AND CLP REFERENCE LIMITS: Primary Compounds for Wilcox 7-27-16 | | | | | Project Screening | | Achievable | |---------------------------|---------------------------------|-------|------------|-------------------|-------|------------| | Analyte | Analytical Method (1) | Units | CASRN | Level (4) | DL | RL | | Volatile Organic Compound | s (VOCs), including Naphthalene | | | | | | | Acetone | TO-15 SIM/TO-15 | μg/m3 | 67-64-1 | 32,000 | 0.109 | 1.188 | | Benzene | TO-15 SIM/TO-15 | μg/m3 | 71-43-2 | 0.36 | 0.249 | 0.31947 | | Bromodichloromethane | TO-15 SIM/TO-15 | μg/m3 | 75-27-4 | 0.076 | 0.121 | 0.670 | | 2-Butanone (Methyl Ethyl | TO-15 SIM/TO-15 | μg/m3 | 78-93-3 | 5,200 | 0.147 | 1.180 | | Ketone) | | | | | | | | Carbon Tetrachloride | TO-15 SIM/TO-15 | μg/m3 | 56-23-5 | 0.47 | 0.069 | 0.6292 | | Chloroform | TO-15 SIM/TO-15 | μg/m3 | 67-66-3 | 0.12 | 0.054 | 0.4883 | | Chloromethane | TO-15 SIM/TO-15 | μg/m3 | 74-87-3 | 94 | 0.114 | 1.032 | | 3-Chloropropene | TO-15 SIM/TO-15 | μg/m3 | 107-05-1 | 0.47 | 0.213 | 1.565 | | alpha-Chlorotoluene | TO-15 SIM/TO-15 | μg/m3 | 100-44-7 | 0.057 | 0.072 | 0.518 | | Cumene | TO-15 SIM/TO-15 | μg/m3 | 98-82-8 | 420 | 0.059 | 0.492 | | Cyclohexane | TO-15 SIM/TO-15 | μg/m3 | 110-82-7 | 6,300 | 0.072 | 0.344 | | 1,2-Dichlorobenzene | TO-15 SIM/TO-15 | μg/m3 | 95-50-1 | 210 | 0.144 | 0.601 | | 1,3-Dichlorobenzene | TO-15 SIM/TO-15 | μg/m3 | 541-73-1 | NS | 0.114 | 0.601 | | cis-1,2-Dichloroethene | TO-15 SIM/TO-15 | μg/m3 | 156-59-2 | NS | 0.107 | 0.39648 | | 1,1-Dichloroethane | TO-15 SIM/TO-15 | μg/m3 | 75-34-3 | 1.8 | 0.077 | 0.40479 | | 1,1-Dichloroethene | TO-15 SIM/TO-15 | μg/m3 | 75-35-4 | 210 | 0.091 | 0.39652 | | 1,2-Dibromoethane (EDB) | TO-15 SIM/TO-15 | μg/m3 | 106-93-4 | 0.0047 | 0.115 | 0.76843 | | 1,4-Dichlorobenzene | TO-15 SIM/TO-15 | μg/m3 | 106-46-7 | 0.26 | 0.084 | 0.60127 | | rans-1,2-Dichloroethene | TO-15 SIM/TO-15 | μg/m3 | 156-60-5 | NS | 0.075 | 0.39648 | | 1,2-Dichloropropane | TO-15 SIM/TO-15 | μg/m3 | 78-87-5 | 0.28 | 0.055 | 0.462 | | cis-1,3-Dichloropropene | TO-15 SIM/TO-15 | μg/m3 | 10061-01-5 | NS | 0.077 | 0.454 | | 1,4-Dioxane | TO-15 SIM/TO-15 | μg/m3 | 123-91-1 | 0.56 | 0.133 | 0.360 | | Ethyl Benzene | TO-15 SIM/TO-15 | μg/m3 | 100-41-4 | 1.1 | 0.096 | 0.43419 | | 4-Ethyltoluene | TO-15 SIM/TO-15 | μg/m3 | 622-96-8 | NS | 0.088 | 0.492 | | Hexachlorobutadiene | TO-15 SIM/TO-15 | μg/m3 | 87-68-3 | 0.13 | 0.469 | 5.333 | | Naphthalene | TO-15 SIM/TO-15 | μg/m3 | 91-20-3 | 0.83 | NS | NS | | 1,1,2,2-Tetrachloroethane | TO-15 SIM/TO-15 | μg/m3 | 79-34-5 | 0.048 | 0.124 | 0.68654 | | Γoluene | TO-15 SIM/TO-15 | μg/m3 | 108-88-3 | 5,200 | 0.064 | 0.37681 | | Γrichloroethene | TO-15 SIM/TO-15 | μg/m3 | 79-01-6 | 0.48 | 0.107 | 0.53738 | | 1,2,4-Trimethylbenzene | TO-15 SIM/TO-15 | μg/m3 | 95-63-6 | 7.3 | 0.034 | 0.492 | | n,p-Xylene | TO-15 SIM/TO-15 | μg/m3 | 108-38-3 | 100 | 0.056 | 0.43423 | | o-Xylene | TO-15 SIM/TO-15 | μg/m3 | 95-47-6 | 100 | 0.069 | 0.43423 | | Vinyl Chloride | TO-15 SIM/TO-15 | μg/m3 | 75-01-4 | 0.17 | 0.023 | 0.255 | #### NOTES: - 1. Analytical laboratory will screen the sample to determine if sample will be analyzed via TO-15 SIM (low level) or TO-15. - 2. U.S. Environmental Protection Agency (EPA) Regional Screening Levels (RSLs) Summary Table May 2016 http://www.epa.gov/region9/superfund/prg/. - 3. Values calculated based on EPA current residential air RSLs (updated May 2016) modified using the methodology specified in the EPA OSWER Technical Guide for Assessing and Mitigating the Vapor Intrusion Pathway from Subsurface Vapor Source to Indoor Air , June 2015 by dividing by an attenuation factor of 1 for crawlspace soil gas and 0.03 for sub-slab soil gas. - 4. The project screening level was selected to satisfy the EPA requirements asspectfied in the EPA OSWER Technical Guide for Assessing and Mitigating the Vapor Intrusion Pathway from Subsurface Vapor Source to Indoor Air. - 5. Achievable laboratory limits are for Eurofins Air Toxics, Inc., Folsom, California; limits determined for Quarter 3 of 2015. CASRN = Chemical Abstracts Service Registry Number - c/nc = Carcinogen/non-carcinogen NA = Not applicable NS = Not specified P RL = Reporting limit μg/m3= Microgram(s) per cubic meter TO-15 = EPA Compendium of Methods for the Determination of Toxic Organic Compounds in Ambient Air , Second Edition. #### REQUEST FOR LABORATORY SAMPLE ANALYSES | Site Name: Wilcox Oil
Company | City/State: Bristow, OK | CERCLIS #: OK0001010917 | |--|--|--| | GPRA Account #:2015 T
06L 06GGCO00 | Site Spill ID # 06GG | Type of Investigation/Purpose: RI | | EPA SAM, RPM, OSC:
Katrina Higgins-Coltrain
(RPM)
Mail Code: 6SF-RL | Analytical Turnaround Time Region 6 Lab: 35X_ CLP Organics: 7 14 21_X_ CLP Inorganics: 7 14 21 X_ | Type of Contract: EPA RAC Contractor: Patrick Appel Direct: 972-453-5038 Cell: 817-437-0563 Luis Vega Direct: 972-459-5040 Cell: 214-280-9031 | | | | Shipping Contact: Patrick Appel and Luis Vega | | Telephone #: 214-665-8143 | Are preliminary results required? 48 hrs VOA () Yes (X) No | Telephone #: see above | | Fax #: | 72 hrs Extractables () Yes (X) No
72 hrs Inorganics () Yes (X) No | On Site Ph #: see above | | | | E-Mail address: Patrick Appel pappel@eaest.com Luis Vega lvega@eaest.com | | Potential Enforcement Action? () Yes (X) No | Requires justification and prior approval. | Date Sample Control Center
Received Request For Sample
Analysis: | | Proposed Sampling Period | week of September 12 - 16, 2016 | | Please assure that this request for analytical services has been signed and dated by the appropriate Site Assessment Manager, Remedial Project Manager, or On Scene Coordinator. Please assure that the Sample Control Center has a copy of all relevant Quality Assurance Project Plans (QAPPs) and Sampling and Analysis Plans (SAPs). Is the QAPP, QASP, SAP, O&M Plan, GWMP,DAW, or other relevant plan being submitted with this Request For Sample Analyses? QAPP was previously submitted 6/30/16 If no, please explain (expected date of submission etc.): Submitted 6/30/16 | Signature of EPA Site Assessment M | lanager (SAM), Remedial Project Manager (RPM), or On Scene | |--------------------------------------|--| | Coordinator (OSC) to signify approva | <mark>l of this analytical service request.</mark> | | Signature: | Date: | To most efficiently obtain laboratory capability for your request, please address the following considerations. Incomplete or erroneous information may result in a delay in the processing of your request. # 1. General description of analytical services requested: (QA/R5 - Element B1) | Matrix | Analysis | Number of Samples | Field Q | C Samples | |---|--|-------------------------------|-------------|--| | | | (without QC)
high/low conc | How many? | Type? | | Soil (refer to attached Table 6) | Volatiles | | | Trip blank
Duplicate
Matrix spike
Equipment Blank | | Estimate 10 location per day with 4 samples | Semivolatiles | 1 | 2
1
1 | Duplicate
Matrix spike
Equipment Blank | | per location over
one 5-day week | PAHs | 1 | 2
1
1 | Duplicate
Matrix spike
Equipment Blank | | | Metals including mercury | 1 | 2
1
1 | Duplicate
Matrix spike
Equipment Blank | | | Cyanide | | | Duplicate
Matrix spike
Equipment Blank | | | Dioxins/furans | 1 | 2
1
1 | Duplicate
Matrix spike
Equipment Blank | | | Pesticides | | | Duplicate
Matrix spike
Equipment Blank | | | PCB | | | Duplicate
Matrix spike
Equipment Blank | | Water
(refer to attached | Volatiles (including EDB) Trace Water | 13 | 1
2
1 | Trip blank
Duplicate
Matrix Spike | | Table 8) | Volatiles (including EDB)
Low Water | | | Trip blank
Duplicate
Matrix Spike | | | Semivolatiles
Low Water | 13 | 2
1 | Duplicate
Matrix Spike | | | PAHs
Low Water by SIM | 13 | 2
1 | Duplicate
Matrix Spike | | | Hexavalent Chromium | 13 | 2
1 | Duplicate
Matrix spike | | | Metals including mercury | 13 | 2
1 | Duplicate
Matrix spike | | | Cyanide | 13 | 2
1 | Duplicate
Matrix spike | | Air (refer to attached table 9) | Volatiles Semivolatiles (naphthalene and | 10
10 | 3 | Duplicate Duplicate | | , | 1,4-dioxane) | | | | Additional description (areas where samples are being collected etc.): 2. Analytical protocol required (analytical method & method number, extraction or digestion method & method number, CLP SOW reference, for each matrix if required, etc.): (QA/R5 - Element B4) ### Current CLP methods (04/06/16) are: Organics by SOM02.3 Inorganics by ISM02.3 Refer to attached Table 12 and excel sheets. | Matrix | Analysis | Methods | |--------|---|--| | Soil | Semivolatiles | SOM02.3 (Low Soil) | | | PAHs | SOM02.3 (Low Soil by SIM) | | | Metals including mercury | ISM02.3/ICP-MS (with ICP-AES for salts only) | | | Dioxins/Furans | CLP HRSM01.2 | | | Volatiles | SOM02.3 Trace Water | | Water | Volatiles | SOMOZ.S Trace Water | | | Semivolatiles | SOM02.3 (Low Water) | | | PAHs | SOM02.3 (Low Water by SIM) | | | Metals, including mercury | ISM02.3/ICP-MS (with ICP-AES for salts only) | | | Cyanide | ISM02.3 | | | Hexavalent Chromium | SW-846 Method 7199 or Standard method 218.7 | | Air | Volatiles
Naphthalene
1,4-Dioxane | EPA TO-15 SIM | #### Additional Information: Complete the following information if Method 5035 for VOA soils has been requested: | # of low conc. soils | # of medium conc. soils | Type of Vials | # of low
conc. soils | # of medium conc. soils | |----------------------|-------------------------|---------------|-------------------------|-------------------------| | | | | | | - 3. CLP Modified Analysis Clause The latest Statement of Works (SOWs), includes a modified analysis clause. The modified analysis allows the regions to request minor changes to current SOW analytical methods in order to meet specific field site requirements. The changes are limited in scope and must be approved by the EPA CLP Program Manager and Contracting Officer before implementation. Information must be submitted <u>three weeks</u> prior to the sampling event. The information the client must submit three weeks prior to the sampling event are; Lab Request Form and the approved sampling plan/QAPP. - 4. Analytical results required (specify laboratory documentation and reporting requirements, reporting units, format requirements, etc.): (QA/R5 - Elements A6 and B4) Standard CLP and/or EPA Region 6 Houston Lab deliverable 5. Data requirements (reporting limits; per analyte per matrix; reporting units; applicable reference levels, etc.): (QA/R5 - Elements A7, B1, and B4) (Attach extra pages if necessary) For CLP capabilities - http://www.epa.gov/superfund/programs/clp/facts.htm. For Region 6 Laboratory capabilities - http://www.epa.gov/earth1r6/6lab/r6lab.htm Note: Samples submitted to the CLP for analysis must be low or medium concentration, single phase, homogenous (not oily), soil, sediment, or water. Also, samples with matrix related problems (oily material, high concentration of compounds, etc.) and/or high moisture content will raise the method CRQL's. a. Compounds/chemicals of concern (Action levels etc.) – Required information – List the compounds/analytes driving the investigation and the action level required to meet DQO's. | Parameters | Action Levels / Detection Limits | | | | |--|------------------------------------|--|--|--| | | water (µg/L) soil/sediment (ug/kg) | | | | | Please see attached excel table for ground water and soil. | | | | | The excel tables provide the volatile, semivolatile, PCB, Pesticide, Dioxin, and metals parameters that are of highest interest for the site. The Project screening level is the requested Action Level/Detection limit for this project. Tab 1 is for ground water, Tab 2 is for air, and Tab 3 is for soil. 6. QC Requirements (PE samples & frequency, spikes, duplicates, blanks, & frequency) | QC Type | Frequency | QC Limits | |--------------|--------------|-------------------------------| | Trip Blank | 1 per cooler | See attached Tables 12 and 4. | | Duplicate | 1 per 10 | | | Matrix Spike | 1 per 20 | | #### REQUEST FOR LABORATORY SAMPLE ANALYSES | Site Name: Wilcox Oil
Company | City/State: Bristow, OK | CERCLIS #: OK0001010917 | | | |--|--|--|--|--| | GPRA Account #:2015 T
06L 06GGCO00 | Site Spill ID # 06GG | Type of Investigation/Purpose: RI | | | | EPA SAM, RPM, OSC:
Katrina Higgins-Coltrain
(RPM) Mail Code: 6SF-RL | Analytical Turnaround Time Region 6 Lab: 35X_ CLP Organics: 7 14 21_X_ CLP Inorganics: 7 14 21 X_ | Type of Contract: EPA RAC Contractor: Patrick Appel Direct: 972-453-5038 Cell: 817-437-0563 Luis Vega Direct: 972-459-5040 Cell: 214-280-9031 | | | | | | Shipping Contact: Patrick Appel and Luis Vega | | | | Telephone #: 214-665-8143 | Are preliminary results required? 48 hrs VOA () Yes (X) No | Telephone #: see above | | | | Fax #: | 72 hrs Extractables () Yes (X) No
72 hrs Inorganics () Yes (X) No | On Site Ph #: see above | | | | | | E-Mail address: Patrick Appel pappel@eaest.com Luis Vega Ivega@eaest.com | | | | Potential Enforcement Action? () Yes (X) No | Requires justification and prior approval. | Date Sample Control Center
Received Request For Sample
Analysis: | | | | Proposed Sampling Period: week of September 19 - 23, 2016 | | | | | Please assure that this request for analytical services has been signed and dated by the appropriate Site Assessment Manager, Remedial Project Manager, or On Scene Coordinator. Please assure that the Sample Control Center has a copy of all relevant Quality Assurance Project Plans (QAPPs) and Sampling and Analysis Plans (SAPs). Is the QAPP, QASP, SAP, O&M Plan, GWMP,DAW, or other relevant plan being submitted with this Request For Sample Analyses? QAPP was previously submitted 6/30/16 If no, please explain (expected date of submission etc.): Submitted 6/30/16 | Signature of EPA Site Assessment M | lanager (SAM), Remedial Project Manager (RPM), or On Scene | |--------------------------------------|--| | Coordinator (OSC) to signify approva | <mark>l of this analytical service request.</mark> | | Signature: | Date: | To most efficiently obtain laboratory capability for your request, please address the following considerations. Incomplete or erroneous information may result in a delay in the processing of your request. # 1. General description of analytical services requested: (QA/R5 - Element B1) | Matrix | Analysis | Number of Samples | Field QC Samples | | | |---|--|-------------------|---------------------|--|--| | | (without QC)
high/low conc | | How many? | Type? | | | Soil (refer to attached Table 6) | Volatiles | 205 | 5
20
10
10 | Trip blank
Duplicate
Matrix spike
Equipment Blank | | | Estimate 10 location per day with 4 samples | Semivolatiles | 205 | 20
10
10 | Duplicate
Matrix spike
Equipment Blank | | | per location over
one 5-day week | PAHs | 205 | 20
10
10 | Duplicate
Matrix spike
Equipment Blank | | | | Metals including mercury | 205 | 20
10
10 | Duplicate
Matrix spike
Equipment Blank | | | | Cyanide | 205 | 20
10
10 | Duplicate
Matrix spike
Equipment Blank | | | | Dioxins/furans | 10 | 1
1
1 | Duplicate
Matrix spike
Equipment Blank | | | | Pesticides | 10 | 1
1
1 | Duplicate
Matrix spike
Equipment Blank | | | | PCB | 10 | 1
1
1 | Duplicate
Matrix spike
Equipment Blank | | | Water
(refer to attached | Volatiles (including EDB) Trace Water | 1 | 1
1
1 | Trip blank
Duplicate
Matrix Spike | | | Table 8) | Volatiles (including EDB)
Low Water | 1 | 1
1
1 | Trip blank
Duplicate
Matrix Spike | | | | Semivolatiles
Low Water | 1 | 1
1 | Duplicate
Matrix Spike | | | | PAHs Low Water by SIM | 1 | 1 | Duplicate Matrix Spike | | | | Hexavalent Chromium | 1 | 1 1 | Duplicate Matrix spike | | | | Metals including mercury | 1 | 1 | Duplicate Matrix spike | | | | Cyanide | 1 | 2
1 | Duplicate
Matrix spike | | | | | | | Duplicate Duplicate | | Additional description (areas where samples are being collected etc.): 2. Analytical protocol required (analytical method & method number, extraction or digestion method & method number, CLP SOW reference, for each matrix if required, etc.): (QA/R5 - Element B4) ### Current CLP methods (04/06/16) are: Organics by SOM02.3 Inorganics by ISM02.3 Refer to attached Table 12 and excel sheets. | Matrix | Analysis | Methods | |--------|---------------------------|--| | | Volatiles | 5035 + SOM02.3 (Low Soil) | | Soil | Semivolatiles | SOM02.3 (Low Soil) | | | PAHs | SOM02.3 (Low Soil by SIM) | | | Metals including mercury | ISM02.3/ICP-MS (with ICP-AES for salts only) | | | Cyanide | ISM02.3 | | | Dioxins/Furans | CLP HRSM01.2 | | | Pesticides | SOM02.3 | | | PCB | SOM02.3 | | | Volatiles | SOM02.3 Trace Water | | Water | Volatiles | SOM02.3 (Low Water) | | | Semivolatiles | SOM02.3 (Low Water) | | | PAHs | SOM02.3 (Low Water by SIM) | | | Metals, including mercury | ISM02.3/ICP-MS (with ICP-AES for salts only) | | | Cyanide | ISM02.3 | | | Hexavalent Chromium | SW-846 Method 7199 or Standard method 218.7 | | | | | #### Additional Information: Complete the following information if Method 5035 for VOA soils has been requested: | | # of low conc. soils | # of medium conc. soils | Type of Vials | # of low conc. soils | # of medium conc. soils | |---|----------------------|-------------------------|---------------|----------------------|-------------------------| | Pre-Weighed
Vials with stir
bar (Closed
System
Vials) | 100 | 100 | | | | 3. CLP Modified Analysis Clause - The latest Statement of Works (SOWs), includes a modified analysis clause. The modified analysis allows the regions to request minor changes to current SOW analytical methods in order to meet specific field site requirements. The changes are limited in scope and must be approved by the EPA CLP Program Manager and Contracting Officer before implementation. Information must be submitted <u>three weeks</u> prior to the sampling event. The information the client must submit three weeks prior to the sampling event are; Lab Request Form and the approved sampling plan/QAPP. 4. Analytical results required (specify laboratory documentation and reporting requirements, reporting units, format requirements, etc.): (QA/R5 - Elements A6 and B4) Standard CLP and/or EPA Region 6 Houston Lab deliverable 5. Data requirements (reporting limits; per analyte per matrix; reporting units; applicable reference levels, etc.): (QA/R5 - Elements A7, B1, and B4) (Attach extra pages if necessary) For CLP capabilities - http://www.epa.gov/superfund/programs/clp/facts.htm. For Region 6 Laboratory capabilities - http://www.epa.gov/earth1r6/6lab/r6lab.htm Note: Samples submitted to the CLP for analysis must be low or medium concentration, single phase, homogenous (not oily), soil, sediment, or water. Also, samples with matrix related problems (oily material, high concentration of compounds, etc.) and/or high moisture content will raise the method CRQL's. a. Compounds/chemicals of concern (Action levels etc.) – Required information – List the compounds/analytes driving the investigation and the action level required to meet DQO's. | Parameters | Action Levels / Detection Limits | | | |--|------------------------------------|--|--| | | water (µg/L) soil/sediment (ug/kg) | | | | Please see attached excel table for ground water and soil. | | | | The excel tables provide the volatile, semivolatile, PCB, Pesticide, Dioxin, and metals parameters that are of highest interest for the site. The Project screening level is the requested Action Level/Detection limit for this project. Tab 1 is for ground water, Tab 2 is for air, and Tab 3 is for soil. 6. QC Requirements (PE samples & frequency, spikes, duplicates, blanks, & frequency) | QC Type | Frequency | QC Limits | |--------------|--------------|-------------------------------| | Trip Blank | 1 per cooler | See attached Tables 12 and 4. | | Duplicate | 1 per 10 | | | Matrix Spike | 1 per 20 | |